泥土巢 - 机器学习之TensorFlow https://www.nituchao.com/category/ml-tf/ Ubuntu 18.04安装TensorFlow 1.x GPU版本 https://www.nituchao.com/ml-tf/ubuntu1804-install-tensorflow-1x-gpu.html 2020-03-04T10:56:00+08:00 Ubuntu 18.04安装TensorFlow 1.x GPU版本概述带GPU支持的TensorFlow需要依赖一些驱动和库,主要是NVIDIA显卡驱动和CUDA。另外,推荐使用Anaconda来管理Python环境,并且使用Python 3.6.x版本,以避免不必要的麻烦。本机环境操作系统:Ubuntu 18.04.3 LTSAnaconda:conda 5.2Python: Python 3.6.9 :: Anaconda, Inc.Compiler: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0必要组件NVIDIA GPU drivers - CUDA 10.0要求410.x及以上。CUDA: TensorFlow支持CUDA 10.0(TensorFlow >= 1.13.0)CUPTI: CUDA性能分析接口组件cuDNN: The NVIDIA CUDA Deeep Neural library(cuDNN),提供了一组经过优化的深度学习操作组件,包括前向卷积,反向卷积,池化,正则化,激活层等。TensorRT: version 5.0,可选,改善某些模型的推理的延迟和吞吐量。TensorFlow: 1.15note:TensorFlow所需要的软件依赖请查看:Software requirementsTensorFlow对Python,GCC,cuDNN,CUDA等版本要求,请查看Tested build configurationsUbuntu系统安装Ubuntu选择安装界面,在按e键进入编辑界面。找到"Boot Options ed boot=… initrd=/casper/initrd.lz quiet splash —"修改红色部分(删去“—”并添加“nomodeset”)如下“Boot Options ed boot=… initrd=/casper/initrd.lz nomodeset quiet splash”接着按 '‘F10’'启动系统》安装NVIDIA显卡驱动1,使用命令ubuntu-drivers devices 查看当前提供的驱动列表:== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 == modalias : pci:v000010DEd00001C03sv00001043sd000085BFbc03sc00i00 vendor : NVIDIA Corporation model : GP106 [GeForce GTX 1060 6GB] driver : nvidia-driver-390 - distro non-free driver : nvidia-driver-430 - distro non-free driver : nvidia-driver-435 - distro non-free recommended driver : xserver-xorg-video-nouveau - distro free builtin == /sys/devices/pci0000:00/0000:00:1c.6/0000:04:00.0 == modalias : pci:v000014E4d000043B1sv00001A3Bsd00002123bc02sc80i00 vendor : Broadcom Limited model : BCM4352 802.11ac Wireless Network Adapter driver : bcmwl-kernel-source - distro non-free2,推荐安装最新版本的显卡驱动使用命令sudo apt install nvidia-driver-435安装显卡驱动,安装成功后重启系统。3,查看当前显卡信息使用命令nvidia-smi查看当前先看的驱动版本,内心及处理器信息。Tue Dec 31 11:18:01 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 | |-------------------------------|----------------------|----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 106... Off | 00000000:01:00.0 On | N/A | | 29% 23C P8 8W / 120W | 603MiB / 6075MiB | 0% Default | +-------------------------------|----------------------|----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1228 G /usr/lib/xorg/Xorg 40MiB | | 0 1274 G /usr/bin/gnome-shell 49MiB | | 0 2081 G /usr/lib/xorg/Xorg 300MiB | | 0 2212 G /usr/bin/gnome-shell 210MiB | +-----------------------------------------------------------------------------+安装CUDA在NVIDIA官网的CUDA下载界面,按照操作系统类型选择合适的安装包,我这里选择Ubuntu 18.04 deb[local]。然后使用下面的命令,来安装:wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb sudo apt-key add /var/cuda-repo-10-1-local-10.1.243-418.87.00/7fa2af80.pub sudo apt-get update sudo apt-get -y install cuda安装CUPTICUPTI组件包含在CUDA中,无需单独安装。CUPTI采用懒加载的方式进行初始化,当你第一次调用CUPTI函数时,会触发该初始化操作。CUPTI提供了包括Activity API,Callback API,Event API,Metric API和Profiler API。安装cuDNN现在cuDNN安装包在cuDNN的官网,按照要求勾选一些选项后,进入下载界面,按照操作系统类型选择合适的安装包,我这里选择"Download cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.1"下的运行时库和文档库:cuDNN Runtime Library for Ubuntu18.04 (Deb)cuDNN Developer Library for Ubuntu18.04 (Deb)cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb)安装cuDNN载完成后后,使用下面的命令来依次安装:sudo dpkg -i ./libcudnn7_7.6.5.32-1+cuda10.1_amd64.deb sudo dpkg -i ./libcudnn7-dev_7.6.5.32-1+cuda10.1_amd64.deb sudo dpkg -i ./libcudnn7-doc_7.6.5.32-1+cuda10.1_amd64.debnote: cuDNN的runtime, dev, doc三个包要按顺序依次安装。验证cuDNN安装完cuDNN的三个组件后,使用如下命令nvidia-smi查看本机NVIDIA驱动程序,如果显然如下错误,则需要重启系统。Failed to initialize NVML: Driver/library version mismatch依次执行如下命令,如果结果输出Test passed!,则表示cuDNN安装成功。cp -r /usr/src/cudnn_samples_v7/ ~/Downloads/cudnn_samples_v7/ cd ~/Downloads/cudnn_samples_v7/mnistCUDNN make clean && make ./mnistCUDNN安装TensorFlow本机在Anaconda环境下安装TensorFlow 2.0.0,Python版本是3.6.9,$ pip install tensorflow-gpu==2.0.0note:1,建议Python版本使用3.6.x,而不是3.7.x。测试TensorFlow GPU使用如下代码,如果安装正确,则会输出True。tf.test.is_gpu_availablelibcudart.so.10.0解决如果测试TensorFlow过程中,会出现下面的错误:2020-01-09 13:44:35.195765: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory 2020-01-09 13:44:35.195853: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory 2020-01-09 13:44:35.195919: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory原因:TensorFlow2.0现在支持CUDA10.0,还不支持CUDA10.1,而我的Ubuntu上安装的是CUDA10.1(也正确安装了cuDNN)。现在只需要安装一个CUDA10.1就行。可以仿照安装pytorch时就自动安装cudatoolkit 10.1.243,无需再下载CUDA10.0的包,在Ubuntu上重新安装CUDA10.0,而是直接用conda安装cudatoolkit。conda install cudatoolkit=10.0Other Problem安装TensorFlow问题 解决Cannot uninstall 'wrapt'. It is a distutils installed project 使用Anaconda管理Python环境 https://www.nituchao.com/ml-tf/anaconda-create-python-evn.html 2018-07-13T09:31:00+08:00 当系统中需要多个版本的python时,使用anaconda或者virtualenv来创建虚拟环境隔离python版本是一个非常好的办法。本文使用anaconda来创建多个隔离环境。Anaconda Download官方地址清华大学镜像Anaconda3-5.2.0-Linux-x86_64更改Anaconda的源推荐使用国内的第三方源来加速Anaconda的包下载速度。Linux/Mac系统可以修改用户目录下的.condarc文件(如果没有可以手动创建):channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud使用命令conda config --set show_channel_urls yes可以开启下载包时显示源链接。检查当前系统中anaconda已经创建的环境可以看到我们系统中目前只有一个base环境。$conda info --env # conda environments: # base * /home/liang/anaconda3创建基于python 3.6的开发环境使用如下命令创建虚拟环境data_analytics_py36,然后anaconda会下载相关的依赖。$conda create -n data_analytics_py36 python=3.6 anaconda 查看anaconda虚拟环境列表$conda info --env # conda environments: # base * /home/liang/anaconda3 micloudml /home/liang/anaconda3/envs/micloudml进入虚拟环境data_analytics_py36$source activate data_analytics_py36退出虚拟环境data_analytics_py36$deactivate data_analytics_py36修改pip源推荐使用国内第三方源来加速pip,Mac/Linux系统可以修改(如果没有手动创建)~/.pip/pip.conf,添加如下内容:[global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple TensorFlow使用线性回归解决特征拟合问题 https://www.nituchao.com/ml-tf/tensorflow-leaner-regression.html 2018-05-21T19:17:00+08:00 线性回归(LinearRegression),顾名思义是一种回归模型,拟合一个带有系数 $w = (w_1, ..., w_p)$ 的线性模型,使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。其数学表达式为:$$ \min_{w}||wx - y||_{2}^{2} $$模型定义本文旨在使用TensorFlow平台,实现线性回归的过程。import tensorflow as tf import numpy as np # 使用NumPy生成假数据(phony data),总共100个点 x_data = np.float32(np.random.rand(2, 100)) y_data = np.dot([0.100, 0.200], x_data) + 0.3000 # 构造一个线性模型 b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0)) y_pre = tf.matmul(W, x_data) + b # 损失函数:最小化方差 loss = tf.reduce_mean(tf.square(y_pre - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # 实例化Session,并初始化变量 sess = tf.Session() sess.run(tf.global_variables_initializer()) # 拟合平面 for step in range(0, 201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b))训练输出从训练输出可以到,当训练200轮后,得到了稳定的权重向量w和b。最终的线性拟合曲线为: $y = 0.10000989x_{0} + 0.2000066x_{1} + 0.29999176$ 0 [[ 0.66747683 0.33177963]] [-0.11118987] 20 [[ 0.2787464 0.28042707]] [ 0.17062303] 40 [[ 0.15737668 0.23200317]] [ 0.2553007] 60 [[ 0.11898003 0.21165822]] [ 0.28466448] 80 [[ 0.10637598 0.20409651]] [ 0.294756] 100 [[ 0.10215825 0.20141646]] [ 0.29820964] 120 [[ 0.10073327 0.20048615]] [ 0.29938921] 140 [[ 0.10024957 0.20016627]] [ 0.29979169] 160 [[ 0.10008503 0.20005679]] [ 0.29992896] 180 [[ 0.10002899 0.20001937]] [ 0.29997575] 200 [[ 0.10000989 0.2000066 ]] [ 0.29999176] TensorFlow使用神经网络解决异或分类问题 https://www.nituchao.com/ml-tf/tensorflow-cnn-xor.html 2018-05-21T19:10:00+08:00 异或(XOR),是一个数学逻辑运算。如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。从上图我们可以看出,与(AND),与非(NOT AND),或(OR)等三种情况,都可以找到不止一条直线将各种情况分类开,但是对于异或(XOR),则找不出一条直线,将其进行分类。本质上,异或是一种线性不可分问题。本文将使用2层神经网络模型,来解决异或问题。具体代码如下:import tensorflow as tf # 定义异或问题的输入和标签 X = [[0, 0], [0, 1], [1, 0], [1, 1]] Y = [[0], [1], [1], [0]] x_ = tf.placeholder(tf.float32, shape=[4, 2]) y_ = tf.placeholder(tf.float32, shape=[4, 1]) # 定义中间层列维度 HU = 3 # 输入层到中间层的定义 with tf.name_scope("input") as scope: W1 = tf.Variable(tf.random_uniform([2, HU], -1.0, 1.0)) b1 = tf.Variable(tf.zeros([HU])) O = tf.nn.sigmoid(tf.matmul(x_, W1) + b1) layer1_sum = tf.summary.scalar("liang", O) # 中间层到输出层的定义 with tf.name_scope("output") as scope: W2 = tf.Variable(tf.random_uniform([HU, 1], -1.0, 1.0)) b2 = tf.Variable(tf.zeros([1])) y = tf.nn.sigmoid(tf.matmul(O, W2) + b2) layer2_sum = tf.summary.scalar("jian", y) # 损失函数使用:最小二乘法,即最小化均方差 with tf.name_scope("train") as scope: cost = tf.reduce_sum(tf.square(y_ - y), reduction_indices=[0]) train_sum = tf.summary.scalar("cost", cost) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cost) # 实例化Session,并初始化变量 sess = tf.Session() sess.run(tf.global_variables_initializer()) # 设置运行步长 Ecoches = 5000 for i in range(Ecoches): sess.run(train_step, feed_dict={x_ : X, y_ : Y}) if i % 500 == 0: result = sess.run(cost, feed_dict={x_ : X, y_ : Y}) print('Epoch ', i) print('Cost ', result) # 计算预测值与实际值之间的准确率 correcct_prediction = abs(y_ - y) < 0.5 cast = tf.cast(correcct_prediction, "float") accuracy = tf.reduce_mean(cast) yy, aa = sess.run([y, accuracy], feed_dict={x_:X, y_:Y}) print("Output: ", yy) print("Accuracy: ", aa)运行代码后,看到训练过程日志:Epoch 0 Cost [ 1.01291001] Epoch 500 Cost [ 0.99675679] Epoch 1000 Cost [ 0.97751558] Epoch 1500 Cost [ 0.85073531] Epoch 2000 Cost [ 0.6944164] Epoch 2500 Cost [ 0.1805] Epoch 3000 Cost [ 0.05683474] Epoch 3500 Cost [ 0.03097299] Epoch 4000 Cost [ 0.02076247] Epoch 4500 Cost [ 0.01544176] 在Jupyter Notebook中使用TensorFlow https://www.nituchao.com/ml-tf/tensorflow-at-jupyter-notebook.html 2018-04-14T16:00:00+08:00 环境System: Ubuntu 18.04 Anaconda: conda 4.4.10 Python: Python 3.6.4 :: Anaconda, Inc. TensorFlow: tensorflow-1.7.0-cp36-cp36m-linux_x86_641,安装Anaconda从官网下载Anaconda的安装包,执行sh命令安装即可。2,安装TensorFlow按照官网的安装指南,通过pip命令安装TensorFlow即可。3,创建虚拟环境$ conda create -n tensorflow python=3.64,启动虚拟环境$ source activate tensorflow5,安装iPython和Jupyter$ conda install ipython $ conda install juypter6,查看Jupyter Kernel路径查看Jupyter Kernel路径,从结果中可以看到,当前的Jupyter Kernel路径为:/home/liang/.local/share/jupyter/kernels/python3$ jupyter kernelspec install-self --user [InstallNativeKernelSpec] Removing existing kernelspec in /home/liang/.local/share/jupyter/kernels/python3 [InstallNativeKernelSpec] Installed kernelspec python3 in /home/liang/.local/share/jupyter/kernels/python37,创建TensorFlow Kernel路径为TensorFlow Kernel命名为tfkernel$ mkdir -p ~/.ipython/kernels $ mv /home/liang/.local/share/jupyter/kernels/python3 mv /home/liang/.ipython/kernels/tfkernel8,重命名新Kernel在Notebook中的名字使用下面的命令,打开新Kernel的配置文件$ vim /home/liang/.ipython/kernels/tfkernel/kernel.json将"display_name"中的默认值Python 3替换为"TF@Python 3",保存,并退出。9,验证打开一个新的Jupyter Notebook$ jupyter notebook新建一个新的Notebook文件,在菜单栏里依次选择"Kernel" -> "Change kernel" -> "TF@Python 3"。输入一行import tensorflow as tf并运行,如果没有出现任何错误,表示环境已经生效。10,后台运行可以通过screen命令,新建一个Session,在这个Session里运行一个Jupyter Note,然后Detach该Session即可。